La rigueur mathématique imposerait de raisonner avec des mesures algébriques. Par commodité, on se limite ici à des angles et positifs et inférieurs à 90°.
Dans le cercle unitaire, soient les angles et de mesures respectives et . Alors les coordonnées respectives de A et de B sont et
Soit M le milieu du segment [AB]. Alors les coordonnées de M sont .
Le triangle OAB est isocèle puisque Donc la droite (OM) est à la fois une bissectrice et une médiatrice issue de O. L’angle mesure . Par conséquent :
Soit H le projeté orthogonal de M sur l’axe des abscisses.. mesure . Par conséquent la mesure de est
Alors .
Par ailleurs .
OH et HM sont les coordonnées du point M, exprimées précédemment. Cela donne donc :
Voir : Sinus et cosinus de sommes